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Abstract

Background: Cryptococcus gattii infections are being reported in the United States (US) with increasing frequency.
Initially, US reports were primarily associated with an ongoing C. gattii outbreak in the Pacific Northwest (PNW)
states of Washington and Oregon, starting in 2004. However, reports of C. gattii infections in patients from other US
states have been increasing since 2009. Whether this is due to increasing frequency of disease, greater recognition
within the clinical community, or both is currently unknown.
Methodology/Principal Findings: During 2005–2013, a total of 273 C. gattii isolates from human and veterinary
sources in 16 US states were collected. Of these, 214 (78%) were from the Pacific Northwest (PNW) and comprised
primarily the clonal C. gattii genotypes VGIIa (64%), VGIIc (21%) and VGIIb (9%). The 59 isolates from outside the
PNW were predominantly molecular types VGIII (44%) and VGI (41%). Genotyping using multilocus sequence typing
revealed small clusters, including a cluster of VGI isolates from the southeastern US, and an unrelated cluster of VGI
isolates and a large cluster of VGIII isolates from California. Most of the isolates were mating type MATα, including all
of the VGII isolates, but one VGI and three VGIII isolates were mating type MATa.
Conclusions/Significance: We provide the most comprehensive report to date of genotypic diversity of US C. gattii
isolates both inside and outside of the PNW. C. gattii may have multiple endemic regions in the US, including a
previously-unrecognized endemic region in the southeast. Regional clusters exist both in California and the
Southeastern US. VGII strains associated with the PNW outbreak do not appear to have spread substantially beyond
the PNW.
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Introduction

Cryptococcosis is primarily caused by two species,
Cryptococcus neoformans and C. gattii. Cryptococcus
neoformans is found worldwide and infects both healthy and
immunocompromised patients, although in the HIV era it is
nearly always identified as a pathogen in immunocompromised
hosts [1–3]. Cryptococcus gattii has a more limited global
distribution and, though previously associated with
immunocompetent hosts, can cause infection in
immunocompromised hosts as well [1,2,4–7]. Cryptococcus
gattii was once thought to be exclusive to tropical and sub-
tropical climates, but infections have recently been identified in
temperate climates [8–12]. There are four recognized
molecular types of C. gattii: VGI, VGII, VGIII and VGIV [13,14].

The global distribution of these genotypes is not uniform: VGII
and VGIII infections are the most-frequently identified isolates
in the Americas, VGIV infections occur almost exclusively in
Africa, and VGI predominates in Europe, Australia and Asia
[5,9,11,15–21].

Cryptococcus gattii infections have been long recognized as
present, but infrequent, in the US [22–26]. By the early 2000s,
although sporadic cases had been recorded from a few US
states, the only endemic areas in North America were thought
to be Southern California and Mexico [7,22–25]. Beginning in
1999, a large number of C. gattii infections were identified
during a short period of time in animals and humans living on
temperate Vancouver Island and mainland British Columbia
[9,27–30]. Infections were soon identified in the Pacific
Northwest (PNW) US as well [31–37]. US cases outside the
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PNW, especially in California, have been noted in the past
[23,26,38–42], but increased awareness of C. gattii infections
associated with the PNW outbreak may have increased
awareness of and surveillance for cases from other US states
[4,43–48]. Here we report the distribution and genotypic
variability of 273 human and veterinary isolates of C. gattii
collected in the United States between January 2005 and
January 2013, both inside and outside the PNW region.

Material and Methods

Isolate collection
Isolates were submitted to the Centers for Disease Control

and Prevention (CDC) through passive surveillance by state
public health departments of Oregon and Washington (the
disease is reportable in both states), through passive
surveillance in other US states, and through requests on
various clinical microbiology listserv groups to submit isolates
to the CDC Fungus Reference Laboratory. Isolates were
confirmed as C. gattii by melanin production on DOPA media
and by the production of a blue color following growth on
Canavanine-Glycine-Bromthymol blue media [49]. All isolates
were assigned a unique identifier and stored at -80°C.

Multilocus sequence typing
Isolates were subtyped using multilocus sequence typing

(MLST). The URA5, IGS1, CAP59, LAC1, GPD1, PLB1, and
SOD1 gene fragments were amplified as described [50] for all
isolates. Allele numbers and sequence types (ST) were
determined using the online C. gattii MLST database (http://
mlst.mycologylab.org/DefaultInfo.aspx?Page=Cgattii). All new
alleles were submitted to the ISHAM MLST database for
inclusion and are currently available as part of the database.

Phylogenetic analysis
All seven MLST alleles for each isolate were concatenated

and aligned using the ClustalW function in BioEdit 7.0.0 [51].
Phylogenic analysis was performed using the Mega 4.1
software package [52]. Dendrograms were constructed by
using Neighbor-Joining method using the default parameters in
the Mega software.

Mating type determination
Mating type was determined for each isolate by amplification

of the MFa and MFα pheromones, as described previously [53].
Mating assays were performed on V8 agar as previously
described [54] using wild-type strains described in this study as
mating pairs.

Ethics statement
The CDC Human Research Protection Office found this

surveillance activity to be exempt from IRB approval as
surveillance without identifiers under 45 CFR 46.101(b)(4). No
experiments were performed on animals.

Results

Strain collection
Between January 2005 and January 2013, the CDC received

169 human isolates and 104 veterinary isolates from 16 US
states (Table 1, Table S1). Most isolates were from
symptomatic humans or animals living in Oregon (n=151),
Washington (n=63), and California (n=32). Twenty-seven
(10%) isolates came from other states throughout the
continental US, Alaska and Hawaii. Thirteen (48%) of these 27
non-PNW isolates came from the southeast states of South
Carolina, Georgia, Florida and Alabama. Sixty-eight (65%)
veterinary isolates were from cats and dogs; isolates also came
from llamas and alpacas, porpoises and dolphins, goats, elk,
horses, sheep, ferrets, and a cow.

Molecular typing
The majority of the isolates in this collection (78%) originated

in the PNW, and were mostly VGIIa (64%), VGIIb (9%), or
VGIIc (21%). A higher proportion of Oregon (n=41, 27%) than
Washington (n=3, 5%) isolates was VGIIc (p<0.001), and a
lower proportion of Oregon isolates (n=91, 60%) than
Washington isolates (n=46, 73%) was VGIIa (p=0.03) (Table
2). For the three patients with VGIIc infection in Washington,
acquisition of the infection in neighboring Oregon could not be
ruled out. Two isolates from Oregon and one isolate from
Washington were identified as molecular type VGII, but not
VGIIa, VGIIb or VGIIc. There were three VGII isolates from
California, one VGIIa and two VGIIb. Six VGII isolates came
from Hawaii, Colorado, Florida, Idaho and Utah. All except the
Hawaii and Florida isolates could be associated with a travel
history to the PNW.

Table 1. Breakdown of C. gattii isolates from US passive
surveillance by state where isolated.

State Total Human Veterinary*
Oregon 151 88 63
Washington 63 31 32
California 32 28 4
Georgia 8 8  
New Mexico 3 2 1
Idaho 2 1 1
Alabama 2 2  
Hawaii 2 1 1
Florida 2 2  
Michigan 2 2  
Colorado 1  1
Montana 1 1  
Utah 1 1  
Rhode Island 1 1  
Alaska 1  1
South Carolina 1 1  
 273 169 104

* Veterinary = feline (44), canine (24), camelid (11), cetacean (7), caprine (6),
cervid (4), equine (3), ovine (2), mustelid (2), bovine (1)
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Eleven (5%) isolates from Washington and Oregon were VGI
(n=5) or VGIII (n=6). In contrast, 18 (57%) isolates from
California were molecular type VGIII and 11 (33%) were VGI.
Of the 30 VGIII isolates, 18 (60%) were from California; the rest
were from Georgia (n=2), New Mexico (n=2), Alabama (n=1),
Michigan (n=1), Alaska (n=1), and South Carolina (n=1). No
isolates of molecular type VGIV were identified in this US
collection.

The state with the most C. gattii isolates outside of the PNW
and California was Georgia. Of eight isolates from Georgia, six
(75%) were molecular type VGI and two (25%) were molecular
type VGIII. Overall, VGI isolates were reported from 11
different states, VGIII isolates were reported from eight states
and VGII isolates were reported from eight states (Figure 1).

Allelic diversity
LAC 1 was the most informative locus with 17 alleles

represented in the collection, 9 of them in VGIII isolates (Table
3). CAP59 was the least informative locus with only 10 alleles
represented. VGIII isolates had the greatest number of total
alleles across all loci (n=37) and VGII, despite being the most
abundant molecular type by far, had the fewest total alleles
across all loci (n=25). There were no alleles that were shared
across molecular type; each was unique to VGI, VGII or VGIII.

MLST analysis
Among the 273 isolates, 34 MLST sequence types (STs)

were identified. There were 12 STs among the 29 VGI isolates,
15 STs among the 32 VGIII isolates, and seven STs among the
212 VGII isolates. There were only 15 STs among the 214
PNW isolates (VGI had five STs for five isolates; VGII had 5
STs for 203 isolates; VGIII had five STs for six isolates), with
approximately equal diversity between human isolates (9 STs)

Table 2. Breakdown of C. gattii genotype by state where
isolated.

 Number of isolates

State VGI VGII not a, b or c VGIIa VGIIb VGIIc VGIII
Oregon 4 2 91 9 41 4
Washington 1 1 46 10 3 2
California 11  1 2  18
Alabama 1     1
New Mexico 1     2
Georgia 6     2
Hawaii 1 1     
Colorado   1    
Florida 1   1   
Idaho  1 1    
Michigan 1     1
Montana 1      
Utah   1    
Rhode Island 1      
Alaska      1
South Carolina      1
 29 5 141 22 44 32

and veterinary isolates (11 STs). Most of the genotypic
diversity in the collection originated outside the PNW; there
were 24 STs among only 59 isolates. Although the VGI and
VGIII isolates were highly diverse, certain STs within each
molecular type appeared with greater frequency. Within VGI,
nine (31%) of 29 isolates were ST51. These isolates were
mostly from California, but also included isolates from Oregon,
New Mexico and Rhode Island. The second-most-frequent VGI
ST was ST162, comprising five (63%) of eight isolates from
Georgia (5/6 VGI isolates from Georgia), one of two from
Florida, and one of two from Michigan. Within VGIII, 10 (31%)
of 32 isolates were ST75, and three were the closely-related
ST139. Most (77%) of these ST75 and ST139 isolates were
from California, but one each also came from Oregon,
Washington, and Alaska (the Alaska isolate was from a cat that
previously resided in California, and the Washington human
case was from a person that had recently moved from
California to Washington).

Genotypic distribution among veterinary cases
Among the isolates from dogs, all 24 were VGII isolates

(VGIIa=19; VGIIb=3; VGIIc=2). In contrast, in cats, seven
(17%) isolates were molecular type VGIII, and one was
molecular type VGI. All five isolates from Washington
porpoises were VGIIb; however, a single isolate from an
Oregon porpoise was VGIIa. All three horse isolates were
VGIIb, one each from Oregon, Washington and California. Of
the 11 isolates from camelids, eight (72%) were VGIIa, two
were VGIIc, and one was VGIII.

Phylogenetic analysis
The sequences for all seven loci were concatenated and

neighbor-joining trees were derived for each molecular type.
VGI isolates could be divided into three clusters with strong
bootstrap support (Figure 2). Cluster 1 isolates were primarily
from California, while cluster 2 isolates were primarily from the
Southeastern US. There were shared alleles between the
clades for CAP59, GPD1, LAC1, and PLB1. No alleles were
shared between clades for SOD1, URA5 and IGS1. The VGII
isolates were clustered in the major genotypes VGIIa, VGIIb
and VGIIc (Figure 3). There were five VGII isolates that were
not VGIIa, VGIIb, or VGIIc; three clustered with VGIIc, one

Table 3. Genotypic diversity by allele.

  Genotype

Allele name # of alleles VGI VGII VGIII
GPD1 13 6 4 5
CAP59 10 2 5 4
PLB1 12 3 4 5
LAC1 17 5 3 9
SOD1 15 7 4 4
URA5 13 5 2 6
IGS1 12 6 3 4
Number of STsa 12 7 15

a ST = sequence type
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clustered with VGIIa and one clustered with VGIIb. Molecular
type VGIII isolates could be divided into two clusters with good
bootstrap support (Figure 4). Based on common alleles
between the two studies, these two lineages correspond to the
VGIIIa and VGIIIb lineages that have been previously
described for isolates from California [46]. Most VGIIIa isolates
originated in California, but the six VGIIIb isolates came from
five different states. The isolates from South Carolina and
Georgia fell outside of the two clusters. There were shared
alleles across the two clusters for CAP59, SOD1, and URA5.

Mating Type
Mating type (MAT) was determined for all isolates. There

were 269 MATα, including all of the VGII isolates, and 4 MATa
isolates. The MATa isolates included a VGI isolate from a
dolphin from Hawaii, a VGIII isolate from a human case in New
Mexico, a VGIII isolate from a human case in California and a
VGIII from a cat in Oregon. All four MATa isolates
corresponded to a unique ST in the collection. Two of the
MATa isolates were confirmed by the production of

basidiospores from traditional mating assays with MATα
isolates.

Discussion

This analysis of sequence type diversity of C. gattii isolates
from a US population provides significant new information
about this emerging infection in the US. First, the endemic
geographic range for C. gattii in the US extends beyond the
PNW and California, and potentially comprises much of the
southeast US. Second, C. gattii genotypic diversity in the US
outside of the PNW is much higher than in the PNW. Finally,
we identified circulating clusters in the US population that are
predominant within each molecular type, and these clusters
seem to have geographic associations.

C. neoformans has long been divided into four distinct
groups by serology [55]. It wasn’t until the 1970s that two of the
serotypes, B and C, were recognized as an independent
species (species gattii) [56–58]. Using serotyping as a
retrospective species identification tool, there is a long history

Figure 1.  US map showing C. gattii distribution.  The map shows the distribution of C. gattii molecular types by the state of
origin. Because complete travel histories are not known for all patients contributing isolates, it is possible that some infections were
acquired in states other than the ones in which they were recognized.
doi: 10.1371/journal.pone.0074737.g001
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Figure 2.  Phylogenetic analysis of VGI isolates.  The neighbor-joining tree was constructed using the maximum-likelihood model
and reveals three well supported clades among VGI isolates. Bootstrap values (1000 replicates) are shown next to the branches.
CA isolates are blue, Pacific Northwest isolates are red and Southeast US isolates are green.
doi: 10.1371/journal.pone.0074737.g002
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Figure 3.  Phylogenetic analysis of VGII isolates.  The neighbor-joining tree was constructed using the maximum-likelihood
model and reveals that all VGII isolates can be clustered with VGIIa, VGIIb, or VGIIc.
doi: 10.1371/journal.pone.0074737.g003
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Figure 4.  Phylogenetic analysis of VGIII isolates.  The neighbor-joining tree was constructed using the maximum-likelihood
model and reveals two well supported clades. Bootstrap values (1000 replicates) are shown next to the branches. CA isolates are
blue, Pacific Northwest isolates are red and Southeast US isolates are green.
doi: 10.1371/journal.pone.0074737.g004
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of C. gattii in the US. Wilson and colleagues [39] were the first
to recognize that C. neoformans isolates from California were
primarily serotypes B and C. Shortly after that, Denton and
DiSalvo [38] reported a serotype C environmental isolate from
an abandoned house in Augusta, Georgia, as well as three
patient isolates - two serotype C and one serotype B - from an
Augusta Hospital. In 1977, Bennett and colleagues performed
serosurveillance on a collection of 272 Cryptococcus spp
isolates from 31 US states [22], reporting 39 serotype B or C
isolates from patients in 10 different states, including Alabama,
California, Georgia, Minnesota, New Jersey, North Carolina,
Oklahoma, Pennsylvania, Texas, and Washington; 25 (64%)
came from southern California. Unfortunately, travel histories
were not available for patients providing isolates, so possible
acquisition in states outside the patients’ state of residence
could not be investigated and all environmental isolates within
that collection were serotype A or D (species neoformans).
Fromtling [41] reported isolates of serotype B or C from
patients in Alabama, Tennessee, and Louisiana with no travel
history to any other endemic region. Older reports document
patients from Oklahoma and New York with C. gattii serotype B
and C infections, but past travel to an endemic region could not
be ruled out [42,59]. More recently, C. gattii patients were
identified from southern California, Georgia, Rhode Island, New
Mexico, Florida, and North Carolina, although the North
Carolina patient likely acquired his infection in California
[7,26,43–48]. In this study, we identified C. gattii isolates from
16 different US states. Although travel history was not known
for many of the patients, this study indicates that C. gattii
patients are geographically dispersed in the US. Some may
have a travel history to endemic regions, but others may have
acquired their infection locally in unrecognized endemic
regions. Five patients from Georgia, one from Florida, and one
from Alabama had no documented travel history outside of the
southeast US within the year before their illness, indicating an
infection that was likely acquired locally. The tropical climate of
HI makes findings of C. gattii infections there unsurprising. The
isolates from Michigan and Montana are perhaps the most
intriguing. The Michigan VGIII isolate falls into the clade with
VGIII isolates from California (figure 4). The Montana and
Michigan VGI isolates fall into the clade with isolates from the
southeast US (Figure 2), but it cannot be ruled out that their
infections were acquired locally.

Although C. gattii infections outside of the PNW and
California have been documented previously, there has been
very little information about the molecular type of the isolates
outside of the PNW [43–48]. Here we show that the diversity of
C. gattii genotypes outside of the PNW is high, and that VGI,
VGIII, and VGII may all be endemic to the US. Even though the
majority of the isolates in this study came from Oregon and
Washington, there was less genotypic diversity among the
isolates from these two states than among the isolates from the
rest of the US with only 15 genotypes identified among 214
isolates from Washington and Oregon; 93% of the isolates from
Washington and Oregon were one of three VGII genotypes.
This is similar to findings in Australia where genotypic diversity
among VGII isolates was low as well, with the majority of
isolates in the genotype VGIIb [60]. One possibility is that VGII

is the more recent colonizer of North America and Australia
and has not yet had a chance to establish clonal diversity in
these two geographic locales. It has been predicted that VGII is
the ancestral clade of C. gattii and that it has its origins in
South America [14,61]. In support of that hypothesis and in
contrast to what was found in the US and Australia, in Brazil
the majority of isolates are VGII, but there is a tremendous
amount of genotypic diversity among isolates including some
closely related to VGIIa and VGIIc (L. Bonfietti and S. Lockhart,
unpublished data). We did identify two new VGII STs, one that
clustered with VGIIc and one that clustered with VGIIa.
Continued surveillance in the PNW will show whether these are
single occurrences or new emerging genotypes. The MATa
mating type has not been identified among the VGII isolates
from the PNW outbreak [35,36], and we did not identify any
MATa VGII isolates in this study.

There were 24 genotypes among the 59 isolates collected
outside the PNW (one unique ST for every 2.5 isolates). C.
gattii isolates from outside the PNW were almost exclusively
molecular types VGI and VGIII. There was significantly more
diversity among the VGI and VGIII isolates than among the
VGII isolates, with 12 VGI STs and 15 VGIII STs. Consistent
with a previous report that identified MATa VGIII isolates in
California [46], we found MATa in VGIII isolates from California,
New Mexico, and Oregon and a VGI isolate from Hawaii. The
presence of isolates of both mating types could lead to more
active recombination within the population and could be an
explanation for the increased diversity of the VGI and VGIII
isolates when compared to the VGII isolates. The increased
diversity and the presence of both mating types is also an
indicator that VGI and VGIII have been present in the US for
much longer than VGII.

Despite the diversity outside of the PNW, there were clusters
of STs. There was a cluster of closely related VGI isolates in
the southeastern states of Georgia and Florida and a small
cluster of VGIII isolates from Georgia and South Carolina.
Similar to what had been reported previously from HIV-infected
persons [46], this study identified a cluster of closely related
VGIII isolates from California, primarily among HIV-uninfected
persons [62]. However, we also identified a cluster of VGI
isolates from California that was unrelated to the VGI isolates
found in the southeastern US. Clusters of a single sequence
type spread over a large geographic area may be an indicator
of the longevity of a clonal group within the geographic region.

There were several limitations to this study. Surveillance
outside of the PNW was passive, and most likely did not
include the entire spectrum of C. gattii disease; that is, mild
cases might have been missed, and if different genotypes
represent mild versus severe disease, our genetic profile of
cases might be biased. Additionally, outside of the PNW,
cryptococcal infections are rarely identified to the species level
(e.g., neoformans versus gattii). Second, because limited
patient information was collected for many of the cases from
outside the PNW, we did not have all of the travel histories and
therefore cannot exclude travel-acquired infections for some
patients. Finally, veterinary isolates were collected primarily
from the PNW and therefore the genotypic diversity that may
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be present in the veterinary population may be
underrepresented in this analysis.

Cryptococcus gattii is now recognized as endemic to the US.
Our results increase knowledge about the diversity of C. gattii
isolates from the US and describe a new endemic region in the
Southeastern US. Taking into account historical data from
Georgia about C. gattii, including environmental isolates of C.
gattii from >50 years ago [38], and the 13 cases from Georgia,
South Carolina, Florida and Alabama in this report, it seems
likely that the southeast US has been an endemic zone for C.
gattii for a long time, with clinical cases perhaps going
unrecognized previously.

Further knowledge of the distribution and diversity of C. gattii
in the US is important: recent work has shown that there are
differences in antifungal susceptibility between the molecular
types [63–65], and there may be differences in clinical
presentation between C. gattii infections with different
molecular types [62]. C. gattii infections often require lengthier
treatments and more aggressive interventions [1,2,66–68],
making distinction of these infections from C. neoformans
infections extremely important. Increased vigilance for C. gattii
infection throughout the US will help define the endemic region
within the US.

The findings and conclusions of this article are those of the
authors and do not necessarily represent the views of the
Centers for Disease Control and Prevention.
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